Support for frame buffer devices
modulename: fb.ko
and/orfbdev.ko
configname: CONFIG_FB
Linux Kernel Configuration
└─>Device Drivers
└─>Graphics support
└─>Frame buffer Devices
└─>Support for frame buffer devices
In linux kernel since version 2.6.12 )
The frame buffer device provides an abstraction for the graphics
hardware. It represents the frame buffer of some video hardware and
allows application software to access the graphics hardware through
a well-defined interface, so the software doesn't need to know
anything about the low-level (hardware register) stuff.
Frame buffer devices work identically across the different
architectures supported by Linux and make the implementation of
application programs easier and more portable; at this point, an X
server exists which uses the frame buffer device exclusively.
On several non-X86 architectures, the frame buffer device is the
only way to use the graphics hardware.
The device is accessed through special device nodes, usually located
in the /dev directory, i.e. /dev/fb*.
You need an utility program called fbset to make full use of frame
buffer devices. Please read <a href="https://www.kernel.org/doc/Documentation/fb/framebuffer.txt">Documentation/fb/framebuffer.txt</a>
and the Framebuffer-HOWTO at
<http://www.munted.org.uk/programming/Framebuffer-HOWTO-1.3.html> for more
information.
Say Y here and to the driver for your graphics board below if you
are compiling a kernel for a non-x86 architecture.
If you are compiling for the x86 architecture, you can say Y if you
want to play with it, but it is not essential. Please note that
running graphical applications that directly touch the hardware
(e.g. an accelerated X server) and that are not frame buffer
device-aware may cause unexpected results. If unsure, say N.
hardware. It represents the frame buffer of some video hardware and
allows application software to access the graphics hardware through
a well-defined interface, so the software doesn't need to know
anything about the low-level (hardware register) stuff.
Frame buffer devices work identically across the different
architectures supported by Linux and make the implementation of
application programs easier and more portable; at this point, an X
server exists which uses the frame buffer device exclusively.
On several non-X86 architectures, the frame buffer device is the
only way to use the graphics hardware.
The device is accessed through special device nodes, usually located
in the /dev directory, i.e. /dev/fb*.
You need an utility program called fbset to make full use of frame
buffer devices. Please read <a href="https://www.kernel.org/doc/Documentation/fb/framebuffer.txt">Documentation/fb/framebuffer.txt</a>
and the Framebuffer-HOWTO at
<http://www.munted.org.uk/programming/Framebuffer-HOWTO-1.3.html> for more
information.
Say Y here and to the driver for your graphics board below if you
are compiling a kernel for a non-x86 architecture.
If you are compiling for the x86 architecture, you can say Y if you
want to play with it, but it is not essential. Please note that
running graphical applications that directly touch the hardware
(e.g. an accelerated X server) and that are not frame buffer
device-aware may cause unexpected results. If unsure, say N.
source code:
is selected by
CONFIG_VGA_SWITCHEROOCONFIG_FB_CIRRUS
CONFIG_FB_PM2
CONFIG_FB_CYBER2000
CONFIG_FB_OF
CONFIG_FB_CT65550
CONFIG_FB_ASILIANT
CONFIG_FB_IMSTT
CONFIG_FB_XVR500
CONFIG_FB_XVR2500
CONFIG_FB_ATMEL
CONFIG_FB_NVIDIA
CONFIG_FB_RIVA
CONFIG_FB_I740
CONFIG_FB_I810
CONFIG_FB_LE80578
CONFIG_FB_INTEL
CONFIG_FB_MATROX
CONFIG_FB_RADEON
CONFIG_FB_ATY128
CONFIG_FB_S3
CONFIG_FB_SAVAGE
CONFIG_FB_SIS
CONFIG_FB_NEOMAGIC
CONFIG_FB_KYRO
CONFIG_FB_3DFX
CONFIG_FB_VOODOO1
CONFIG_FB_VT8623
CONFIG_FB_TRIDENT
CONFIG_FB_ARK
CONFIG_FB_PM3
CONFIG_FB_CARMINE
CONFIG_FB_MB862XX
CONFIG_FB_SSD1307
CONFIG_FB_SM712
CONFIG_FB_OMAP2
CONFIG_FB_SM750
